

## HDP-003-001105

Seat No.

## B. Sc. (Sem. 1) (CBCS) Examination

November / December - 2017

**Mathematics: M-101** 

(Geometry & Calculus)

[Old Course]

Faculty Code: 003

Subject Code: 001105

Time :  $2\frac{1}{2}$  Hours]

[Total Marks: 70

**Instructions:** 

- (1) All questions are compulsory.
- (2) Right hand side figures indicate the marks.
- 1 Write the correct answer of following questions in short: 20
  - (1) Obtain the Cartesian co-ordinates for the polar co-ordinate  $\left(1, \frac{\pi}{2}\right)$ .
  - (2) Find the center of the circle  $r^2 8r \cos\left(\theta \frac{\pi}{6}\right) + 12 = 0$ .
  - (3) Write the general form for the equation of sphere.

- (4) Find the cylindrical form of the equation  $x^2 + y^2 = 4$ .
- (5) Write the expansion of  $\cos x$  in terms of x.
- (6) Write the  $3^{rd}$  term of series expansion of  $e^x$ .
- (7) Find  $y_7$ , for  $y = 3x^7$ .
- (8) Find n<sup>th</sup> derivative of  $y = xe^x$ .
- (9) Define linear differential equation.
- (10) Write the necessary and sufficient condition for the differential equation to be exact.
- (11) Find the integrating factor of differential equation xdy + ydx = 0.
- (12) Write the order of differential equation

$$\frac{d^2y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$$

- (13) Find  $\frac{1}{D} x^2$ .
- (14) Find the complementary function of the equation  $\left( D^2 5D + 6 \right) y = 0.$
- (15) Find the complementary function of the equation  $\left(D^2 2D + 1\right)y = 0.$
- (16) Write the expansion of  $(1-D)^{-1}$ .



(18) Find the value of 
$$\int_{0}^{\pi/2} \cos^5 x dx$$
.

(19) Find the value of 
$$\int_{0}^{\frac{\pi}{6}} \cos^{6} 3x dx$$
.

(20) Find the value of 
$$\int_{0}^{\pi/2} \sin^4 x \cos^4 x dx$$
.

- 2 (a) Answer any three:
  - 1) Find the equation of line which passes through  $A\left(4, \frac{2\pi}{3}\right)$  and perpendicular to OA.
  - (2) Convert the Cartesian equation  $x^2 y^2 = a^2$  into the polar equation.

(3) If 
$$y = e^{-3x} + e^{3x}$$
, then prove that  $\frac{d^2y}{dx^2} = 9y$ .

(4) Verify Roll's theorem for  $f(x) = \cos x$ ,  $x \in (0, 2\pi)$ .

- (5) Using Maclaurin's series expand the function  $f(x) = e^x$ .
- (6) Evaluate  $\lim_{x \to 0} \frac{\log x}{\cot x}$ .
- (b) Answer any three:

9

(1) Find center and radius of circle

$$r^2 - 4r \cos\left(\theta - \frac{\pi}{4}\right) = 5.$$

- (2) Find the equation of sphere passing through the circle  $x^2 + y^2 + z^2 = 15$ , 2x + 4y + 5z 7 = 0 and point (1, -1, 1).
- (3) Find the n<sup>th</sup> derivative of  $\cos x \cos 2x \cos 3x$ .
- (4) Verify Cauchy's mean value theorem for  $f(x) = \sin x$ ,

$$g(x) = \cos x, \ x \in \left(0, \frac{\pi}{2}\right).$$

- (5) Expand  $f(x) = \sin x$  in powers of  $\left(x \frac{\pi}{2}\right)$ .
- (6) Evaluate:  $\lim_{x \to 0} \left( \frac{1}{e^x 1} \frac{1}{x} \right).$
- (c) Answer any two:

- (1) State and prove Leibnitz's theorem.
- (2) State and prove Lagrange's mean value theorem.

(3) Find the equation of tangent plane at any point  $\left(\alpha,\beta,\gamma\right) \text{ of the sphere}$ 

$$x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$$
.

- (4) Prove that  $\frac{x}{1+x^2} < \tan^{-1} x < x$ , for x > 0.
- (5) Find the equations of the two tangent planes to the sphere  $x^2 + y^2 + z^2 = 9$  which passes through the line x + y = 6, x 2z = 3.
- 3 (a) Answer any three:

- (1) Solve xdy + ydx = 0.
- (2) Solve  $\frac{dy}{dx} + \frac{y \cos x + \sin y + y}{\sin x + x \cos y + x} = 0.$
- (3) Find the general solution of  $p = \tan(px y)$ .
- (4) Find the complementary function of  $\left(D^2 5D + 6\right)y = 0.$
- (5) Find the particular integral of  $(D-4)y = e^{2x}$ .
- (6) Evaluate  $\int_{0}^{\frac{\pi}{2}} \sin^4 x dx.$

(b) Answer any three:

(1) Solve 
$$xy \frac{dy}{dx} = x^2 + y^2$$
.

(2) Solve 
$$\frac{dy}{dx} + y \tan x = \frac{\cos x}{y}$$
.

(3) Solve 
$$x^2 p^2 + pxy - 6y^2 = 0$$
.

(4) Solve 
$$y = 2 px - \frac{p^2}{3}$$
.

- (5) Evaluate  $\frac{1}{D^2}\cos 3x$ .
- (6) Evaluate  $\int \sin^5 x \cos^4 x dx$ .
- (c) Answer any two:

- (1) Solve  $(xy \sin xy + \cos xy) ydx + (xy \sin xy \cos xy) xdy = 0.$
- (2) Prove that  $\frac{1}{f(D)}e^{ax}V = e^{ax} \frac{1}{f(D+a)}V$ .
- (3) Obtain reduction formula for  $\int \cos^n x dx$ ,  $n \in N$ .
- (4) State and prove necessary and sufficient condition for the differential equation Mdx + Ndy = 0 to be an exact equation.
- (5) Derive the formula to solve linear differential equation of first order and first degree.